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Abstract 

From the Liouvil]e cquatien, by ~e rne~.hc.,d of multiple-time-scales, a generalized 
Boltzmarm eq, uat~on ~Sth fluctuations is obtained on the statistical consideratioas of the 
ra~domae~ ~ ff, e ~n_y-i~r~q,'c/e c e v r e k ~  ~n the m.~oscopic picture. These fluctu- 
~ ~ t ~ / - 3 '  the~rero. ~ w h ~  ~ H function deLcr~.as~ with fl~ct~mtiot~s, with 
~ae  towarA ~u~brium. These fluctuations furnish a source for, a madom for~'g 
introduced by Fox m_~d ~ k m ~ , k  i~ the t ~ ] ~  equation,. 

i .  .~!ro&~ctio~ 

The following properties of  the Boltzmam~ equation are well known: 

0 )  As a consequence of  the Stosszah]ansatz iu the formulation o f  the 
co t l~on  integral, the Boltzmann equation is no~. mvariant trpon fl~e 
rew'~_--~A rjf time, .~_~-d the time arrow is expressed by the H theorem 

aH o (1.1) 
dt  

(:2) The monotonic de~ease ~fthe Hfuncti,~n shows that the Boltzmann 
equation deseribe~ a monotonic approach to equilihriu~ without 
fluctuatJons~ 

On the other hand, in the attempts by Bohzmann .(Boltzmann, 1898; 
Ehreafest, I911) to reinterpret the H theorem ia view of ~.he criticism~ of  
Loschmidt and Zermeto, the probabib~ty basis of  the H theorem was 
emphasize d, namely, when the state of the gas is net ~hat of equilibrium, 
the collision integral is to represent the o~rwhe|m~ng!y large probability 
that the collision leads to  a decrease in the value of the H function. From 
.the collision integral and the definition of the H function, it follows that 
this probability of  decrease of  H remains the same if the velocities of  the 
two colJiding particleg are reversed:t Ac~-ordi~g to this reformulation of" 
the meaning of  the H theorem, the H function can rise above the minimum 

�9 "t~But this does not mean that. H decreases both in the forward and ~he ~_ckward 
dL'~fions of time. 
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(or. equJfibrium) ~ lue  give~ by dtt/d~ ~-= O, only to d~crease to ~he minimum 
vN~.e agai~ v, ith ~. large probability. White the physic~l and probability 
considerations are all sa fisfacto~,, there doe~ seem to be lack of an explicit 
nxathemNkc~l exp~ssion o f t b . ~  fluctuations, espedally from the.. point, of 
view of the usual Bottzmatm equation. 

Very recently, Fox & lNle_~beck (I.969) ha~e siudie~t the question of 
fluctuations~ On stmigical theoretical bu~. m o ~  or  less ad hoe ground, they 
introduce a random 'force" term in the usual (linearized) Bottzmann 
equation. On the assumption of general s~afistical propm~ies concer~ing 
this term, they have been able to justify and ~o ex,end the earlier theory otr 
Landau & Lifsbitz (1959) in which terms representing fluctuatkms are 
added in an get~Jstic manner to the hydrodynamieal equations. 

Since 1946, the theo~j of the formulation of a kinetic equation (a 
generalized Bolt~rnann equation) on the basis &the s equation has 

d e v e l o ~  by many aathors (Bogoliubov, 1946; Born & Green, 1946, 
1947; KJrkwood, 1946, 1947; Yvon, 1935). The so-called B-B-G-K-Y 
hierarchy of equations have been tr~-*~ued L~2 ,.wo methods, namely, the 
: tmc~,o:, .... method of P, e g o = , u ~ ,  v,~ . . . .  is . . . . . . . .  " "  e~ension of 

~he C..b~pma~-~-Enskog method of solving the BoJtzmann equa~on, .~.aoA ~{-~ 
"multiple-time-scale ~ ~t!'~ed sugg~ted by Krylov and BogCit~b~v ~~*~,.._:, 
for non-linear mechanics and appiied by Frieman (19_63.)and Sandr~ (I 963) 
to the kinetic theory problem. It has been-found in both methods that 
~nder certain assumptions about ~he initiM conditions (,on t'ae rr~any- 
particle correlations)~ o~m obtains a kinetic equation whict~ reduces to the 
asna! Boltzmann equation upon /naking some approximatio~as. This 
genera~zed P, oltzmanr~ equation also contains no fluctuations, but leads 
to a monotonic approact~ ~o thermodynamic equilibrium. 

The purpose of lhe  present work is to obtain a kinetic equation with 
fluctuations from the B-B-G-K-Y hierarchy of equations of the Liou~i[le 
equation, ~ith the method of "muitip D-qme-scaie~~. . . . . . . . . . .  on co,~ q de_ratjo n . : ~  of the 
lack of defi~ke knowledge about the inida! microscopic state of t.~e- gas_ ~ 

2. Kit, eric Equation with Fiuctuat~on~ 

We start with the Liouv~t[e equation 

O t  - 

where o~ is the Hawdltonian of the system (N panicles, v;[thoat external 
fields), D the densky (probability) in F space, 

.,-r = _Z  +, .e,(l.-,- .-,.! ) 
~t., l  

f f D(qx, q2,...,q.~; P,,P:  . . . . .  Ev) d X ,  ...dX,,,, = 1 (2.2a) 



a~d t~a c~dy b~lc~As denot~ the Poisso~ }~racket~. Let F~ be defined b)' 

Y j X , , . . . , x , ;  t).--_ v ~ 1 ~ 9dX~+~...dX,~ (z~b) 
. , $  

tlmt F, has the dimension (momenlum)-~% Vis the voturne oFtE~ sy~em. 

is the number density of particles at q and t. From the Liouv~lte equa~r 
one obtains the B-Bz-G-K-Y hierarchy of equations (Wu, 1966) 

OF a 7- 
~ + ~c:F2-=noL.2(I,2;~ . 3)F~(1,2,3). etC., " (2.4) 

N 
no - - p  O..sa) 

1 V ,  K l ~  mpl .  "1 1 is the p~'tic)e inde• 

L,o; / )  a 

X~(I,2;j) ~ JS,0 ; j )  .~- L,(2; j )  (2.57o) 
z ! ~ O 

i'he formal solution of (2.4) is 

/2(1,2; t) =e -~ :F2( l ,  2; 0) 
r 

+n,,e-~,' / d s  (2.6) 
�9 0 

and (2.3) becomes 

ON + 
" ~  Kt F ! 

(2.7) 
F~(I,2,3; t).is givea by the next equation in the hierarchy (2.3~ 2A) in 
terms of F4(1,2,3,4; t), etc. if these functions are known from their initial 
conditions, then the ~ equation" (2.7) in principle comp!eteIy deter~ 



Now in Itle ~pir~ of  statistical tt~eories, we do r~ot posse~, nor a ~  we 
h~teres~exl in, a knowledge of ihe m~cro~copic ~ a ~  of  a s y s t ~  (a gas of 
~N particles), We ca~ 0nly ~p~:ify a macroscopic sta~e, ~ terms of mal:~'o- 
~ p i c  lmoperfies, Bu~ any p e n  macroscopic s~ate corresponds io a large 
number o f rn i e ro :~ iC  s~;ates. For e• a knowledge oflhe maerevseopic 

�9 qtra~tities 

i~rtici~ density: ~(r, t) = no.[ N ~ (2.8a) 

Mean How velocit'y: ~(r, t) = no f p mF~@ (2.8b) 

Mean energy d ~ :  E(r,t) i~ 

leaves the function Fa(q,l~; t) ~ill  unspecified: In ~his sense, we shall regard 
i~kk~ ,zeJues o f  ii~e ~ as random f~n~o~s.  

We shall express the Idnet{c equation (ZT) in a form which is closer t~ 
the usual B o I ~ a n ~  ~ ",a " ~q~, t~o~; l e t  %, ~ ,  ~2 ~ the characteristic times 
defin, ed by the time o f a ~ ! M o n ,  L~e ~me between ;wo successive collisions 
~ d  the time, say, for sound to traverse a mac~s distan@, namely, 

ro 
~ O ~ -  - 

U 

,l 
- ~  = -  (2.9) 

lg 

L 
u, 

where r~/, 2, L are respeclivety the raz~ge of  in~ermCer i.nteractio~, r 
mean free path and a maeroscot~ic length, and u is the mean thermal speed 
of the molecules, and u= is the speed of sound in the system~ For ordinary 
temperatm'es a M  densities, 

~o: ~ : ~ i  ~ i0 - ~ :  I0 -a: 10 -~ (2.10) 

In a gas, the state evolves in time in a complicated way. Let the t~Zme t be 
replaced by the three independent time variables 

t = t(~o, % r~) (2.11 a) 
with 

O r -  ' n- -0 ,  1,2 (2.11b) 

where ~ ~s a parameter ~ 1 (e = 10 -~ in equation (2.!0)). 
These three time sca!es are independent since their origins are completely 

arbitraD'. In fact even when a gas has come ~o thermal equilibrium, 
processes involving collisions persist. These collisions lead to fluctuations 
(inn, ~ ~,,a ~" ;,, (2.8)) ;" "~" time ~ -  "~t 



We shall expand all functions F~, F2~ t 5  . . . .  ha powers o f~  

- (2.12) 

F r o m  (2.1I), we have 

Equat ions  (Z3), (2A) bccr~me, on dropping  the subscript 1 f rom F~ (Wu, 
1P66)~ 

i~Fw~ 
~---~ + K,  F ~~ = 0 0 - 1 4 )  

aF~O~ 0Ftt~ 

~ (o) 

~ T  0 T 2 ~t 2 

&----f~ + ~o~:r + ~ F 2  ~ = noL~(1,_ 2;j)F~(~ - (2.1.7) 

:_ _L_-a_ t: F (m _ 0 (2. ! 8) . . . .  -~Z ~ -- ~ : ~ - -  

where % is ob~Aned ' ~ m  .~z in 0- -~  by eXt-ending tile s~mr ~ i c m  ~ o j  > i =- 
f rom 1 t o  s.  

-Let ns make  the Ansatz  .... 

F~(~ 2; ~o, ~ , - . - )  = FC~ 1 ; %,t, .  . . . .  ) Fw)(2; "to, ~t . . . .  ) 
+ G~~ 2 ;  to, t~ . . . .  ) (2.19) 

The solution o f  (2.4) is 

F(~ ; Zo, zl . . . .  ) = e -xt '~ Fr176 zo = 0, z~ . . . .  ) 
= 7."~ E(o)(1; O,z~ . . . .  ) 

o r  

F(O)(l �9 _ 7 . )  F(O)(l ; , O, t ~ )  - . .  ~ ( 1 )  t o ,  q ,  -) 
The soIution o f  (2.16) i s 

F2(~ 2;  to, t t  . . . . .  ) = e - ~ ' o  F~~ 2; 0,  ~ . . . .  ) 

] = 7 ' ~ ' ( I  2 ) [ r  -.,(x, q ,  ~o) , : -  . . ) + G ' ~  ..) (2.21S ' -~Y"~" - - ' ro " -  �9 s ' / J C - t " c " ' t O  L )  z" ~ t ~ T o ~ T I ~ ,  ~ . , x 
L I "  l 

It  is impor tant  to  note here that  the two,  particle correlation function 
Gt~ %;~1 . . . .  ) at % = 0 must not  be  set equal to zero, but  G(~ 
0,zi  . . . .  ) mus t  be left as an unknown random function in the i t ,  z2 . . . .  
t ime scales. - 

(2.2o) 

(220a)  



~w~ put (221) into (2.15) and se~ 

" .,.)! / (m22) t 

~ , m e  

Z ~ ( 1 , 2 )  = lira e ~ ' ~  

t r ~  e~iiation ~ t ~  w~i approach, as to -~" ~ O-e., b "~o), 

and F (1) does not increase secularly it, the "co scale. O~ combining ~A4) 
and (2.22), and using (2oH) ~ obtaie 

n, 

--_ ,~-- r--I ~_:7(2i ]-I Z ~  ) ( i)  F(~ + no Li(l', 2) G(~ 2; zt . . . .  ) (2.24) 
t , , , l  - 

where 
. G ~ ( ] , 2 ;  z~oo .) ~ Z92 G~~ 2; 0, rl . . . .  ) (225) 

G~~ z, . . . .  ) ]5 thus the value of  the two~p~JxTcJe correlation function 
traced back, in accordance with the equafion~ ofr~otion s_f_~e ~wo particles 
governed by the Hamiho~ian ~ ,  in (2.2)o If we ~nLr~se ~he condi6o~ ~ ,*  

G~~ z i , - .  ;) = 0 (2.26) 

�9 equation (2,24) is then the generalized BolI-zmarm equation obtained by 
Bogoiiubov (Bogoliubov._ 1946; Wu, 1966), 

+ Kt F ~~ = no L~(1; 2)Z [~ ]-~ Z ~  ) F(~ (2.127) 

which reduces to the u~ual Boltzmann equation if the inhomogeneity of 
F ~~ within a region of the size of  the range ro of intermolecular interaction 
~eg !ec t ed :  In this case, there is no flucttmtion. 

The initial condition (2.26), however, is too strong a condition and must 
be examined more closely. We must remember that the time-variables ro 
and -c, are independent in the sense that, if we regard the thee t as a linear 
sequence, at any instant t, there are imbedded in t the "~'ariables zo, z: whose 
origins are independent and arbitrary. In an inte~'A of order z, there wilt 
be of  the order 1/e intervals of zo, and I/% independent origins of these 1/% 
intervals of  Zo over each of  which the time scale zo spans. The condition 
(2.26) amounts then to setting the correlation G~~ .. . .  ) = 0  
independently of  t in the zt,-zz . . . .  scales. The conditiou is of course 
mathematicaiiy permissibie; b u c k  defines a time-arrow by an initial 



i ~ a n L  e~r a ~past', at  which t~ere ~re no correlaIions ~ ~hat the system 
evolves in l h ~  dire~ion of time i~ which ~he particles become correlat~ 
by ~qrlue oftheir  interactions~ The resul~ is t~e time:irre,~rsible Bol~zmann 
eq~a t i~ .  From the physie~l point of  ,clew, the assumption of  (2.26), er 
other definite knowledge about  the ~nitial condition of  the gas, is net  
ee~si~ent with the spirit o f  the t h e ~  of  maerouc~pic description of  a gas. 

In view of  the discussions on the statistical _~int of  view following (2.7) 
abo~e, we shaU regard G ~ ( ~ , . . . )  in (2.25) as an experimentally unknown 
random function in ~;he ~a time scale. Equation (2.24) is then a 'Bottzmann 
cq~tio~" with a random force term, namely, 

(~-~ K ) F~~ I - L , : 2 Z ~  2 @ ' ( ) = ~ ~( I , ) _ I - I Z T F ' ~  a ) ~ )  
$,,,! 

where 

is a random function since G(~ t) is a random function. 
" On writing 

F <~ =-f ( i  + q~) w . f + f  (2.30) 

where f ~  a ~olution o f  the-Boltzmann equation (Z27), and fo r  "small' 

if{ <~ , /  (2.30 
one obtair~s'lhe finearizefl ldneflc equation 

n L c2)rZm (,'~ ~9 ({) • (,) = o ,_Z_:t + f ( 1 ) Z :  j ( 2 ) + Z . ~  f ( _ ) Z :  j ~ l ) ] + ~ ( 1 ; t )  (2.32) 

: If  we are interested =i~ -the fluc:tua~]orts from L~e equilibdum state, i.e., 

f = f,,,~uu -- f~(P) _ (2-33) 

this linearized equation becomes 

r i~, + +(q , p , ,  t) -- q~(q, p; t) - ~(q,p,;  t)] 

+ d*(q, p; t) (2.34) 

where g = (1/m)Ipl - p[, a is the ~os5-section of  Lhe two-body collision, 
dg2 is the solid angle of  the scatterivg, and p', p~ are the momenta of the �9 
two particles such that after collision at q they become p, p, respectively. �9 
Equation (2.34)"without t h e ' ~  term is the usua! iineadzed BoitL.'rmann 
equation in the Chapman-Engskeg solution of  the Boltzmann equation. 
Equation (2.34) is just that r~_.mly obtained by Fox (1969)who introduces 
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�9 tafistic~I con:sideratio~s. T ~  approach f~om the Liowdlle equation h~ 
the Wresenlt work thus has f~rnished ~ .sottr~ for a fluctuation terrtl iD Ibr 
Boltzmann equation. 

3. The H-Theorem 

The original statement ofthe Htheorem (1.t) by Bo!t~"na~ on the ba,~g 
of  the Boitzmann equation has been criticized by Losehmidt a~d Zem~elo, 
These criticisms were based on the assumption that the evolution of-the H 
ftmction is d~tr by dynamical laws. In fa~, if the kinetic equation, 
wrii~e~ i,n the from 

N = t ( O  0.-t) 

- !~-+-.-~ (32) 

F(r,p; t) -> F(r,--1E y : )  .~ i~(r, ~; z) 
O-1) goes into 

then it  can readily be , ~  *~ 

~=z(:3, (32) 

d B  

dt 

The Boltzmann equation containing the StosszahIansatz is however rmt a 
r of dynamical laws and is not inva~a~t under time reversal. 
That the Boltzmann equation leads ~o (1~ is ~ber.c%re not subject to the 
object.ions of Loschmidt and Zerme|o. Bo]tzmann has subsequently 
reformulated the H theorem by giving it a probaNiity interpretation. The 
collision integral is taken to give the probable decrease of H whenever H 
is above the asymptotic mirJmam given by dH,/d~ = 0. The H function for 
one individual system may rise, but ~he average of the H function e ra  large 
number of systems is to be described by the H theorem (t.1). This fbrmula- 
tion of the H theorem has been discussed by Boitzmann 0898), P. & 
T, Ehrenfest (1911)and ter Haar (1954). It remains, as noted in the 
Introduction above, to have an explicit theory for des~bing the decease 
of{he H function o n the aieerage but with fluctuations. 

We shall.first show that the fine-~ained time behavior (in the zo time 
scaie) of  the system as described by the Liouvil!e equation does not yield 
fluctuations. Let us take equation (2.3), and write 

F ( ~ ,  . . . .  ) =f(~*~--:-) + 0(%, *'-,--~ 0-5): 



t~fflGTZ~NN L~gJ~TII)N wfrH FL~r~.T!ONN 

whtt~e f i s  the 'slowly' -r part, i~e~ 

T 

f ( ~ , , . . . ) =  lim 1 f F(z~ , ,  . . . .  )dro 
~r..,~.,t d 

o 

Similarly, fe~ tt~e G in 

27,5 

we write 

where 

X" 

0 

0.6a) 

F~(1,2) = F(!)  r(2) + 6 (L2)  0 .7)  

(3,8~ 

0 

(3.9) 

On making expansiong of /7, G as in (2.12), and if'g,e as~me the/nffial 
condition 

G<~ = 0, h . . . .  ) = 0 (K ~0) 

we obtaha fctrf('~l .... ) the geae~z!ized Bokzrnann equation (2.27). If  we 
define the coarse.grained time H function_, by 

then we obtain 
dR d!I 0 
-aT --- ~S < (3.12) 

which is the H theorem in ~he usual form from the Boltzmann equation~ 
The fine-grained time H function is defined by F of (3A) 

H =  

in the 3o time scale. I~ this time state, Fis given by ~he time-reversa! invaria~t 
equation (2.3), and it follows from (3.t)-(3.4), 

dH 
& o  0. (3.14) 

We summa6ze the above rest~lt by saying that if we assume the initial 
condition (3.10), then the Liou-:ille equation leads t o  an H function whir& 
decreases monotonicaliy, in the coarse-grained z~ time scale, but ia the 
fine-grained % time scale remains constant. There are no 'fiuctuationsL 



Let as uow use. the kinetic equation ~28) with ~.r_: ~ d o m  ~erm 
~7(.q,t~; 0 -  On putting (2,30) into 03.3),  we obtain. 

dB r = d  f t F l n _ ,  d f  

The first term is the dH/dt  as given by the usual Boltzmann equation and 
is ( d H / d t ) ~ m  <~ 6. Tile other two terms contain the fluctuations f deter- 
mined b y - ~  random hmction C(q,p; t ) i n  (2,32) and may have all values 
~0o I t  i s t o  be noted that  these fluctuations in H a1"e in the r~ (mean free) 
time scale. These fluctuations in H correspond to  f iu~a / io~ . s  in the entropy 

~ approach of  a system to  equilibrimlL 
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