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Abstract

From the Liouville equation, by the method of multiple-time-scales, a generalized
Boltzmann equation with fuctuations is obtained on the statistical considerations of the -
randomnsss of the many-particle correlations in the macroscopic picture. These fiuctu-
ations lead 12 an H theorer in which the & function decreases, with fuctuations, with
time toward equilibrium. These fuctuations furnishk a source for a random force term
introduced by Fox and T/ienbeck in the Boltzmann equation. :

1. Prrroduction

The following properties of the Boitzmann equation are well known:
{1} As 2 consequence of the Stosszahlansatz in the formulation of the

collision integral, the Boltzmann equation is not invariant upon the
reversal of time, and the time arrow is expressed by the H theorem
dH | o
<0 1.1

- (L)

2y The menotonic decrease of the H function shows that the Boltzmann

“equation describes 2 monotonic approach to equilibrivm without

fluctuations. '

On the other hand, in the attemnpts by Boltzmann (Boltzmann, 1893;
Ehrenfest, 1911) to reinterpret the A theorem in view of the criticisms of
Loschmidt and Zermelo, the probability basis of the H theorem was
emphasized, namely, when the state of the gas is not that of equilibrium,
the collision integral is to represent the overwhelmingly large probability
that the collision leads to a decrease in the value of the H function. From
the collision integral and the definition of the F function, it follows that
this probability of decrease of # remains the same if the velocities of the
two colliding particles are reversed.t According to this reformulation of
the meaning of the # theorem, the H function can rise 2bove the minimum

- t-But this does not mean that H decreases both in the forward and the backward
directions of thne. ’
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{or, eqsiﬁbﬁum} value piven by dFjdt = §, onty to decrease to the minimum
value again with 2 Isrge ;:vmbabzhty ‘While the physical and probabitity
considerations are all saiisfactory, there does seem to be lack of an explicit
mathematical expression of these fluctuations, especially from the point of
view of the usual Boltzmann equation.

Very recently, Fox & Uhlenbeck (1969) have studied the guestion of
floctuations. On statistica! theoretical but more or less af koc ground, they
introduce a random ‘force’ term in the usual (linearized) Boltzmann
gquation. On the assumption of general statistical properties concerning
this term, they have been able to justify and 1o extend the earlier theory of
Landau & Lifshitz {1959) in which ferms represeniing Buctuations are
added in an hevristic manner to the hydrodynamical equations.

Since 1946, the theory of the formulation of a kinetic equation (a
generalized Bolizmann equation) on the basis of the Liouville equation has
been developed by many authors (Bogoliubov, 1946; Born & Green, 1946,
1947; Kirkwood, 1946, 1947; Yvon, 1935). The so-called B-B-G-K-Y
hierarchy of equations have been tremted by two methods, namely, the
‘femctiona!l” method of Bogolivhov whick iz similar 1o 2nd an exiension of
the Chapman--Fnskog method of solving the Boltzmann eynation, and the
‘muitip]e—ﬁm»sazle* methed suggested by Krylov and Bogelivhov {1947
for non-linear mechanics and Appacd by Frieman (19&3} and Sandri{ {1963}
to the kinetic theory problem. Tt has teen found in both methods that
under certain assumptions aboui the initial conditions (on the many
particle correlations), one obtains a kinetic equation which reduces to the
vsual Boltzmann equation upon making some approximations. This
generalized Boltzmans eqm!ioq also contains ne fluctuations, but leads
to a monotonic approach 1o thermodynamic equilibrium.,

The purpose of the presert work is to obtain a kinetic equation with
fluctuations from the B-B-G-K-Y hierarchy of equations of the Licuville
equation, with the method of muupls«ime-scﬁm _on consideration of the

jack of asﬁm‘te knowledge about the initial mcroccopzc state of the pas.”
2. Kinetic Equation with Fluctuations

‘We start with the Liouville equation

Doy G.1)

where 5 is the Hamiltonian of the system (¥ particles, without external
fields), D the density (pmbability) in I' space,

N r,—1,|
'}?’ <y 2m 5+ ;{;‘ .é(z“i ‘_}]}
‘{ i l D(@b ‘l:.: ;. *aﬂ:\i; ph FZ: v ey P.v} ’jX; .o dX‘\’ == (223} ‘

dX,=dq,dp,
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and the curly bracksts denote the Poisson brackets. Let F, be defined by

F 7o U BF) T8 L J O j’ DaX,,,..d%, (225}
. o
so that F, has the dimension (momentum)~*, ¥ is the volume of the system.
N F | . . .
# | Bar nd=ne.0 @20)

is the number density of particles at g and 1. From the Liouville eguation,
one obtains the B-B-G-K-Y hicrarchy of equations (Wu, 1966}

af Lt K}F,{I} zzt,{a{i DMLY @3
o, - S
I +r Fo=n,1,(1,2;3) F5(1,2,3) ete., 2.4
whero
=7
g (2.5a)
K, = P Vi, - 1is the particie index,
o | 3 |
Li(1;) = [ [ daydn, Vi sy
L2 D=L 0 + Li2: 7)Y (2.5b)
2
d
Hy=r P P Vy— » Vi, —...elC
2 Z”Pf f ;E i ¢ s

The formal soiution of (2.4) is
Fyl,2; y=e2" F)(1,2; G}

+ ngeat [ diesiL(1,2; DF(1,2,5;4  12.6)

and {2.3) becomes

- 9F,
T‘*‘Klf‘l

t

wﬂoﬂz(l,ﬁ{ e™2! F3(1,2; 0) b ageTra" | da‘»é"z“‘LzQ N E(L,2, 7 f)}
o

- | @n

Fs(1,2,3; #).is given by the next equation ‘in thc hierarchy (2.3, 2.4} in

terms of F(1,2,3,4; 1), etc. If these functions are known from their initial

e:onditions then the “kinetic equation’ (2.7) in principle completely deter-

lemna Fay Selemcst e - -
mines F{a.p; ¢) without any random 5‘uctuadcm
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Mow in the spirit of statistical thPOﬁE‘S, we do not POSSess, BT 8re we
inierested in, a knowladge of the microscopic state of a system (2 gas of
‘N particles). We can only specify a macroescopic state, in terms of macre-
scopic properties, But any given macroscopic state corresponds 1o 2 Jarge
number of microscopic states. For example, a knowledge of the macroscopic

Particie density: rr, 1) = 1o f F,dp (2.8a)
Mean Flow veiscity: or, ) =un, f Pr 1 dp {2.8b)
Mean cnergy density: E{T )= ?szof r £ d (2.8

feaves the function Fy{g,p; ) still ﬁnspemﬁ:d In this sense, we shall regard
ihe fmdtial values of the F, as random funciions.

We shall express the kinetic equation (2.7) in a form which is closer to
the usual Boltzmann equation. Let 1,, 174, 7, be the characteristic times
defined by the time of a collision, the time between two successive collisions
and the time, -say, for sound to traverse a macroscopic distance, namely,

T
70 = f
A
n== 29)
L
‘tz L e
Hy

where ry, A, L are respectively the range of intermolzcular interaction, the
mean free pathand a macroscopzu i“ﬁgth and u is the mean thermal speed
of the molecules, and wu, is the speed of sound in the system. For ordinary
temmatmm angd densities,

To: 1T, 2 10712:10°8: 107 AT

In a gas, the state evolves in time in a complicated way. Let the time ¢ be
replaced by the three independent time variables

t= (1,74, 72) {2.11a)
with . .
at -~
- =g a=0,1,2 (2.11b)
o1
where ¢ 1s a parameter € 1 (e 107 in equation {2.10)).

These three time scales are independent since their origins are completely
arbitrary. In fact even when a gas has come io thermal egquilibrium,
processe,s involving collisions persist. These collisions lead to fluctuations

(innu Ein 2.8))in the time seale 7,.
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We shall expand afl functions 5, F,, Fs,... in powers of ¢
Fy=3 & F™1g,%,...}
AL

K : e , 2.12)
f;mzs‘i@“}(‘rﬂgfh...); 5“2,3,.r,,N :
From (2.11), we have
, P | ,
4.7 el 213

B e e

Eguations (2.3), (24) become; on dropping the subscript 1 from F; (W,
1566),

Tk P00 @14

;ig}‘? + ?‘?;“ B FO L YE, 5) .15
S 3T

i%? ag - 110 B =nL(1,2; N FOL2,)) (2.17
’?§§+ Foig gz.ig)

Where ¢, is cbtained from &, in (25} by extendin gthe summation o /> i =
from 1 tos.
‘Let us make the Ansatz

‘ Fg(m{l, 2; Tos Tis~ .‘.) == Fﬂ”(i; Tos Faree -) F(G)(Z; Tor Traes ')

. + GO, 2 10, Type- ) (2.19)
_The solution of (2.4} is ) _
FOL; 14,73, ) = € B0 FO(1 70 = 0,75, )
' =ZXF (0’(1,0, Tipees) (2.20)
or

FO>L;0,7) = ZP(DFOU; 10,74, .. 2) (2.20a)
The solution of (2.16)is : S
FZ(_O)(L 2; TorTisen ) = e"-’fz'o F(O)(I’AZ; 0; Tissn ‘)

=232 [1 28 OF Gt 3+ 6701,2:0,5,..0] @21

It is imporiant to note here that the two-particle correlation function
GO1,2; 16,7y,-..) at To =0 musi not be set equal to zero, but G©¥{1,2;
0,74,.. )must be- Inft as an unknown random function m the 1y, 12,
time scales. -
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Hwe put (2.21) into (2.15) and set

BF(E)
%
where

2 . : i . N
= %Lz(l,Z)Zf?Q[H ZPFOUY + G(1,2; 0,7, .. »}} (2.22)
“ii=i 1 .

ZE{1) = lim et
T _
Z2{1,2) = lim g%
]

then equation {2.15) wili approach, as 1o — © fi.e., » 1),

(2.222)

i3
Y LR FY 0 2.23)
: 3 ¢

and F® does not increase secularly in the 1, scale. On combining 2.14)
and (2.22), and using {2.71} we obtain

F)
—- {0}
(a:f;f( ‘)F o

s :
=n L ZEZ 1 ZD (DY FOU) + ng Ly(1; 2) GO (1, 2514,..) (224

_ i-1. - '

where .

G2 1. )=Z2BG9(1,2;0,1,,...) (2.25)
GO1,2; 1y,...}) is thus the value of the two-particle correlation function
traced back, in accordance with the equations of motion of the two particles
governed by the Hamiltonian #, in (2.2). If we impose the conditon ihat

61,2315, =0 o {2.26)

- equation {2.24) is then the generalized Boltzmann equation obtained by
Bogoliubov (Bogoliubov, 1946; Wu, 1966),

. 2 X
(g; + Kl) FO = o Ly(1; ) Z 2 [1 ZO FO) @I7)

=1 .
which reduces to the usual Boltzmann equation if the inhomogeneity of
F@ within a region of the size of the range r, of intermolecular interaction
isneglected. In this case, there is no fluctuation.

The initial condition (2.26), however, is too stroug a condition and must
be examined more closely. We must remember that the time-variables 1,
and 1y are independent in the sense that, if we regard the time ¢ a3 2 linear
sequénce, at any instant ¢, there are imbedded in ¢ the variables 5, 7, whose
crigins are independent and arbitrary. In an interva! of order 7, there will
be of the order 1/e intervals of t,, and 1/¢ independent origins of these /e
intervals of 74 over each of which the time scale 7, spans. The condition
{2.26) amounts then to setting the correlation G9(1,2;0,1,,...)=0
independently of ¢ in the 74,.%,,... scales. The conditior is of course
mathematically permissible; but™it defings a time-arrow by an initiai
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fnstant, or 2 ‘past’, at which there sre no correlaiions o that the sysiem
evolves in that directiop of time in which the paricles become correlated
by virtue of théir interactions. The resulf is the time-drreversible Boltzmann
equation. From the physical point of view, the asssumption of £2.28), or
other definite knowledge abeout the initial condition of the gas, & not
consistent with the spirit of the theory of macroscopic description of a gas,

In view of the discussions on the statistical point of view following (2.7)
above, we shali regard G¥(z,,...5 in {2.25) as an experimentally anknown
random function in the 7, time scale. Equation {2.24) is then 2 ‘Boltzmann
eguation’ with a random force ferm, namely,

: 2z
(%?H m) FO) = nyLy(1; DZR T[] ZFO) + £ 1) 0.28)
o}

where
. P o = o . S
Clunpss y=m | | dpdip, ¥ 0l = GWLL 5 (229)

is a random function since G®(1,2; 1) is a random function.

* On writing 7 -
FO=f(i+o)=f+f 2.30
where 7 3 2 solution of the Boltzmann cquanon (2.27}, and for ‘smalf’
finctuations o _
fi<es (2.31)

one obtains'the linearized kinetic equation
2 A
(=)
=L, ZEZP ANZY A +ZD ADZP N+ Tz (232)
If we are interested -in the fuctuations. from the eguilibrium siate, ie.,

) I zfcqun = feol D) 233
this linearized equation becomes

8. P o oalar o
(5+5.V) 9(a.5; ) = [ [ dp, d280(2,0) fualp) [0, 03 )

+ (g, B3 D) — (e, p: 1) — 0l py; 1)]
+Clg,p; 1) T @239

where g=(1/m)]p; —p|, o is the cross-section of the two-body collision,
d(2 is the solid angle of the scatiering, and p’, p,” are the momenta of the
two particles such that afier collision at q they become p, p, respectively. -
Equation (2.34) "without the ¢ term is the usual linearized Boltzmann
equation in the Chapman-Engskog solution of the Boltzmann equation.
Equation (2.34) is just that recently obtained by Fox {1969) who introduces

a enndam farss farm e rimrad Timlémre Sy
& TanGoRn 10068 W I ”’m usual I’"‘&"Luﬁu SOiZIRann V\!Haueﬁ on
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statistical considerations. The approach from the Liouville equation in
the present work thus has furnished a source for 2 Suctuation term in the
Boltzmaun equation. ‘

3. The H-Theorem

“The original statement of the H theorem (1.1} by Boltzmann oa the basis
of the Boltzmann equation has been criticized by Loschmidt and Zermelo.
These criticisms were based on the assumption that the evolution of the B
function is determined by dynamical laws. In fact, if the kinetic equation,
written in the form

BF \
= I{F} (3.1
s Ume-seversal invariang, ie, i' Bpon time soversal
: 1> —F
R G2
‘ F,p; 3= Flr,~p; -0 = Fle,ps 2
(3.1) goes into
BF
=15, 33
then i can readily be zeen that
aq
wmmants I 1@
= 0. (3.4

The Boltzmann equation containing the Stosszahlansatz is however not a
consequence of dynamical laws and is not invariant under time reversal.
That the Boltzmann equation leads 10 (1.1} Is therofore not subjectto the
objections of Loschmidt and Zermelo. Boltzmann has subsequently
reformulated the H theorem by giving it a probability interpretation. The
collision integral is taken to give the rmbable decrease of Hf whenever H
is above the asymptotic minimum given by dH/dr = 0. The H function for
one individual system may rise, but the average of the A function of 2 large
number of systems is to be described by the X theorem (1.1}, This formula-
tion of the H theorem has been discussed by Boltzmansn (1898), P. &
T. Ehrenfest (1911) and ter Haar (1954). It remains, as noted in the
Introduction above, to have an explicit theory for describing the decrease
- of the H function on the average but with fluctuations.

We shall first show that the fine-grained time behavior (iﬁ the 1, time
scale) of the system as described by the Liouville equation does not vield
fluctuations. Let us take equation (2.3}, and write

Fltg,Ts,.. 0 = r“('t'l,. S+ Y{to, Te,. ..} (3.5}
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whtm Fis the stowly’ varving pari, ie,

Fiin)= Mljﬂ@mpdﬁa e
or
T Tj ‘l’(t& kS TR )dfo =0 (3.6&)
Similarly, for the G in o
‘ F(1,2)=FFQ) + G2 G
we write ——
Gt Tyr . )= 2ty Y+ (T Tas - ) (3.8
whers X . L -
’ 17
g(f;s )" ﬁ__m‘T f G5, Ty, . .} 910 35
3 .

On making expansions of F, G as in (2.12), and if we assume the initial

condition
G(O)(fo = Q, Tisee .) = 0 (gw ;G}

we obtsin for f{z,,...} the gencralized Boltzmann equation (2.27). I we
define the marsr:»g'amﬁd time H function by

, =[] finfigdp (.1

_ then we obtaim L
aA_d g (.12
& 3.12)

which is the H theorem in the usual form from the Beltzmann equation.
The fine-grained time H function is defined by F of (3.4}

H==ff Fln Fdgdp o (3.13)

in the 7 time scale. In this time scale, Fis given by the time-reversal invariant
equation (2.3), and it follows from (3. i}—(3 43,

2, - (3.14)

df@ ( : )
We summarize the above result by saying that if we assume the initial
condition {3.10), then the Liouville equation leads to an H function which
decreases monotonically. in the coarse-grained 1, time scale, but in the
fine-grained 7, time scale remains constant. There are no ‘fluctuations’.
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et us now use the kinetic equation (2.28) with the random ferm
C'(g.p; 1). On putting (2 30) into (3.13), we obtain

di  d
7'2;—"4—-— JFI qudp

_jjdqdp[(!+lnf}af+(l+h7j"ia‘?+in(!-&az@) ory (3.1

The first term is the Ji7/dr as given by the usval Boltzmann equatxm and

is (@H]d?)gon. < 0. The other two terms contain the fluctuations [ deter-
mme:d bym random function C{a,p; £) in (2.32) and may have ail values
Z0. 1t is to be noted that these fluctuations in H are in the 7, (mean free)
time scale. These fluctuationsin H correspond to fluciuations in the entropy
in the approach of a system to equilibrium.
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